f — Linear Algebra f04mcc

nag_real cholesky skyline solve (f04mcc)

1. Purpose

nag real_cholesky skyline solve (f04mcc) computes the approximate solution of a system of real
linear equations with multiple right-hand sides, AX = B, where A is a symmetric positive-definite
variable-bandwidth matrix, which has previously been factorized by nag.real_cholesky_skyline
(f0lmcc). Related systems may also be solved.

2. Specification

#include <nag.h>
#include <nagf04.h>

void nag_real_cholesky_skyline_solve(Nag_SolveSystem selct, Integer n,
Integer nrhs, double al[], Integer lal, double d[], Integer row[],
double b[], Integer tdb, double x[], Integer tdx, NagError *fail)

3. Description

The normal use of this function is the solution of the systems AX = B, following a call of
nag real_cholesky_skyline (f0lmcc) to determine the Cholesky factorization A = LDLT of the
symmetric positive-definite variable-bandwidth matrix A.

However, the function may be used to solve any one of the following systems of linear algebraic

equations:
LDLTX = B (usual system) (1)
LDX = B (lower triangular system) (2)
DLTX = B (upper triangular system) (3)
LL"X =B (4)
LX = B (unit lower triangular system) (5)
LTX = B (unit upper triangular system). (6)

L denotes a unit lower triangular variable-bandwidth matrix of order n, D a diagonal matrix of
order n, and B a set of right-hand sides.

The matrix L is represented by the elements lying within its envelope, i.e., between the first non-
zero of each row and the diagonal (see Section 8 for an example). The width row[i] of the ith
row is the number of elements between the first non-zero element and the element on the diagonal
inclusive.

4. Parameters

selct
Input: selct must specify the type of system to be solved, as follows:
selct = Nag LDLTX: solve LDLTX = B
selct = Nag LDX: solve LDX = B
selct = Nag DLTX: solve DLTX = B
selct = Nag LLTX: solve LL”X = B
selct = Nag LX: solve LX = B
selct = Nag LTX: solve LT X = B.
Constraint: selct must be one of Nag LDLTX, Nag LDX, Nag DLTX, Nag LLTX, Nag LX,

Nag_LTX.

n
Input: n, the order of the matrix L.
Constraint: n > 1.

nrhs

Input: r, the number of right-hand sides.
Constraint: nrhs > 1.

[NP3275/5/pdf] 3.f04mcc. 1

nag_real_cholesky_skyline_solve NAG C Library Manual

al[lal]
Input: the elements within the envelope of the lower triangular matrix L, taken in row by
row order, as returned by nag_real_cholesky skyline (f01mcc). The unit diagonal elements of
L must be stored explicitly.

lal
Input: the dimension of the array al as declared in the function from which
nag_real_cholesky _skyline_solve is called.
Constraint: lal > row[0] + row[l] + ... + row[n — 1].

d[n]
Input: the diagonal elements of the diagonal matrix D. d is not referenced if selct =
Nag_LLTX, Nag_LX or Nag_LTX

row[n]
Input: row[i] must contain the width of row i of L, i.e., the number of elements between the
first (left-most) non-zero element and the element on the diagonal, inclusive.
Constraint: 1 < row[i] <i+1fori=0,1,...,n— 1.

b[n][tdb]
Input: the n by r right-hand side matrix B. See also Section 6.

tdb
Input: the second dimension of the array b as declared in the function from which
nag_real_cholesky _skyline_solve is called.
Constraint: tdb > nrhs.

x[n][tdx]
Output: the n by r solution matrix X. See also Section 6.

tdx
Input: the second dimension of the array x as declared in the function from which
nag-real_cholesky_skyline_solve is called.
Constraint: tdx > nrhs.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG._LT
On entry, n must not be less than 1: n = (value).
On entry, row[(value)] must not be less than 1: row[{value)] = (value).
On entry, nrhs must not be less than 1: nrhs = (value).

NE_2 INT_ARG_GT
On entry, row[i] = (value) while ¢ = (value). These parameters must satisfy row[i] < i+ 1.

NE_2 INT_ARG_LT
On entry, lal = (value) while row[0] + ... 4row[n — 1] = (value). These parameters must
satisfy lal > row[0] + ... +row[n — 1].
On entry, tdb = (value) while nrhs = (value). These parameters must satisfy tdb > nrhs.
On entry, tdx = (value) while nrhs = (value). These parameters must satisfy tdx > nrhs.

NE_BAD PARAM
On entry, parameter selct had an illegal value.

NE_ZERO_DIAG
The diagonal matrix D is singular as it has at least one zero element. The first zero element
has been located in the array d[(value)]

NE_NOT_UNIT_DIAG
The lower triangular matrix L has at least one diagonal element which is not equal to unity.
The first non-unit element has been located in the array al[{value)]

3.f04mcc.2 [NP3275/5/pdf]

f — Linear Algebra

6. Further Comments

f04mce

The time taken by the function is approximately proportional to pr, where p = row|[0] 4+ row[l] +
... + row[n —1].

The function may be called with the same actual array supplied for the parameters b and x, in

which case the solution matrix will overwrite the right-hand side matrix.

6.1. Accuracy

The usual backward error analysis of the solution of triangular system applies: each computed
solution vector is exact for slightly perturbed matrices L and D, as appropriate (see Wilkinson and
Reinsch (1971) pp 25-27 and 54-55).

6.2. References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation (Vol II, Linear Algebra)
Springer-Verlag.

7. See Also

nag_real_cholesky_skyline (f01mcc)

8. Example

To solve the system of equations AX = B, where

and

1 2 0 0
2 5 3 0
0 3 13 0
0 0 0 16
5 14 18 8
0 0 0 24
6 —10
15 =21
1 -3
0 24
51 -39
46 67

5
14
18

8
95
17

0
0
0
24

17
7

Here A is symmetric and positive-definite and must first be factorized by nag_real_cholesky_skyline

(f01mcc).

8.1. Program Text

/* nag_real_cholesky_skyline_solve(fO4mcc) Example Program

*

* Copyright 1996 Numerical Algorithms Group.

*

* Mark 4, 1996.

*/

#include
#include
#include
#include
#include
#include

<nag.h>
<math.h>
<stdio.h>
<nag_stdlib.h>
<nagf01.h>
<nagf04.h>

#define NMAX 6
#define NRHSMAX 2
#define TDB NRHSMAX
#define TDX NRHSMAX
#define LALMAX 14

[NP3275/5/pdf]

3.f04mcc.3

nag_real_cholesky_skyline_solve NAG C Library Manual

main()

{

Integer i, nrhs, k, k1, k2, lal, n;

double a[LALMAX], al[LALMAX], b[NMAX][TDB], 4[NMAX], x[NMAX] [TDX];
Integer row[NMAX];

Nag_SolveSystem select;

static NagError fail;

Vprintf ("fO4mcc Example Program Results\n");
/* Skip heading in data file */
Vscanf ("%x["\n]");
Vscanf ("%1d",&n) ;
if (n<1 || n>NMAX)
{
Vprintf("\n n is out of range: n = %1d\n", n);
exit (EXIT_FAILURE);
}
for (i=0; i<n; ++i)
Vscanf ("%1d",&row[i]);

k2 = 0;
for (i=0; i<n; ++i)
{
k1 = k2;
k2 = k2 + rowl[i];

for (k=k1; k<k2; ++k)
Vscanf ("%1f",&alk]);

}

lal = k2;

if (lal > LALMAX)
{

Vprintf("\n lal is out of range: lal = %1ld\n", lal);
exit (EXIT_FAILURE);
}
Vscanf ("%1d",&nrhs) ;
if (nrhs<1 || nrhs>NRHSMAX)
{
Vprintf ("\n nrhs is out of range: nrhs = 1ld\n", nrhs);
exit (EXIT_FAILURE);
}
for (i=0; i<n; ++i)
for (k=0; k<anrhs; ++k)
Vscanf ("%1£f",&b[i] [k]);
fail.print = TRUE;
fO0imcc(n, a, lal, row, al, d, &fail);
if (fail.code !'= NE_NOERROR)
exit (EXIT_FAILURE);
select = Nag LDLTX;
fO4mcc(select, n, nrhs, al, lal, d, row, (double *)b, (Integer)TDB,
(double *)x, (Integer)TDX, &fail);
if (fail.code != NE_NOERROR)
exit (EXIT_FAILURE) ;
Vprintf ("\n Solution\n");
for (i=0; i<n; ++i)
{
for (k=0; k<nrhs; ++k)
Vprintf ("%9.3f",x[1] [k]);
Vprintf ("\n");

exit (EXIT_SUCCESS) ;

3.f04mcc. 4 [NP3275/5/pdf]

f — Linear Algebra f04mcc

8.2. Program Data

f04mcc Example Program Data

6

1 2 2 1 5 3
1.0

2.0 5.0

3.0 13.0

16.0

5.0 14.0 18.0 8.0 55.0
24.0 17.0 77.0
2

6.0 -10.0

15.0 -21.0

11.0 -3.0

0.0 24.0

51.0 -39.0
46.0 67.0

8.3. Program Results

fO04mcc Example Program Results

Solution
-3.000 4.000
2.000 -2.000
-1.000 3.000
-2.000 1.000
1.000 -2.000
1.000 1.000

[NP3275/5/pdf] 3.f04mce.5

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

